jueves, 25 de septiembre de 2008

Acelerador de partículas

( Una foto del acelerador)
Los aceleradores de partículas son instrumentos que utilizan campos electromagnéticos para acelerar las partículas cargadas eléctricamente hasta alcanzar velocidades (y por tanto energías) muy altas, pudiendo ser cercanas a la de la luz. Además, estos instrumentos son capaces de contener estas partículas. Un acelerador puede ser, desde un tubo de rayos catódicos ordinario, de los que forman parte de los televisores domésticos comunes o los monitores de los ordenadores, hasta grandes instrumentos que permiten explorar el mundo de lo infinitamente pequeño, en búsqueda de los elementos fundamentales de la materia.
Existen dos tipos básicos de aceleradores: por un lado los lineales y por otro los circulares. En este artículo se describirán los tipos más comunes de aceleradores de partículas.

Aceleradores de bajas energías [editar]
Al contrario de la creencia popular, los aceleradores de partículas no son aparatos exclusivos de laboratorios sofisticados, sino que también se encuentran muy presentes en la vida cotidiana de las personas, en forma de aceleradores de bajas energías. Ejemplos muy sencillos de estos aceleradores, de electrones principalmente, son los televisores o monitores de ordenador (los modelos antiguos que utilizan tubos de rayos catódicos, los cuales pueden considerarse aceleradores lineales de una sola etapa) o los aparatos de rayos X que pueden encontrarse en las clínicas dentales o en los hospitales. Estos aceleradores de bajas energías utilizan un único par de electrodos a los que se les aplica una diferencia de potencial, directamente, de algunos miles de voltios. En un aparato de rayos X se calienta un filamento metálico que se encuentra entre ambos electrodos mediante el paso de una corriente eléctrica, emitiendo de este modo electrones. Esos electrones son acelerados en el campo eléctrico generado entre ambos electrodos hasta alcanzar el electrodo que se utiliza como productor de rayos X, fabricado con un metal de alto Z (por ejemplo el tungsteno). También se utilizan aceleradores de partículas de bajas energías, llamados implantadores de iones, para la fabricación de circuitos integrados.

Aceleradores de altas energías

Aceleradores lineales

Los aceleradores lineales (muchas veces se usa el acrónimo en inglés linac) de altas energías utilizan un conjunto de placas o tubos situados en línea a los que se les aplica un campo eléctrico alterno. Cuando las partículas se aproximan a una placa se aceleran hacia ella al aplicar una polaridad opuesta a la suya. Justo cuando la traspasan, a través de un agujero practicado en la placa, la polaridad se invierte, de forma que en ese momento la placa repele la partícula, acelerándola por tanto hacia la siguiente placa. Generalmente no se acelera una sola partícula, sino un continuo de haces de partículas, de forma que se aplica a cada placa un potencial alterno cuidadosamente controlado de forma que se repita de forma continua el proceso para cada haz.

Aceleradores circulares
Artículo principal: Acelerador de partículas circular
Estos tipos de aceleradores poseen una ventaja añadida a los aceleradores lineales al usar campos magnéticos en combinación con los eléctricos, pudiendo conseguir aceleraciones mayores en espacios más reducidos. Además las partículas pueden permanecer confinadas en determinadas configuraciones teóricamente de forma indefinida.
Sin embargo poseen un límite a la energía que puede alcanzarse debido a la radiación sincrotrón que emiten las partículas cargadas al ser aceleradas. La emisión de esta radiación supone una pérdida de energía, que es mayor cuanto más grande es la aceleración impartida a la partícula. Al obligar a la partícula a describir una trayectoria circular realmente lo que se hace es acelerar la partícula, ya que la velocidad cambia su sentido, y de este modo es inevitable que pierda energía hasta igualar la que se le suministra, alcanzando una velocidad máxima.

Agujeros Negros


Un agujero negro u hoyo negro es una región del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que provoca un campo gravitatorio tal que ninguna partícula ni la energía, por ejemplo la luz, puede escapar de dicha región.
La curvatura del espacio-tiempo o «gravedad de un agujero negro» debida a la gran cantidad de energía del objeto celeste provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. El horizonte de sucesos separa la región de agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz.

Andrómeda


La Galaxia de Andrómeda, también conocida como Objeto Messier 31, Messier 31 o NGC 224, es una galaxia espiral gigante. Es el objeto visible a simple vista más alejado de la Tierra (aunque algunos afirman poder ver a simple vista a M33, que está un poco más lejos). Está a 2,5 millones de años luz (775 kpc) en dirección a la constelación de Andrómeda. Es la más grande y brillante de las galaxias del Grupo Local, que consiste en aproximadamente 30 pequeñas galaxias más tres grandes galaxias espirales: Andrómeda, la Vía Láctea y la Galaxia del Triángulo.
Tiene una masa calculada de entre 300.000 y 400.000 millones de masas solares: aproximadamente una vez y media la masa de la Vía Láctea y es el doble de brillante que ésta. Con las mejoras en las mediciones y los datos obtenidos algunos científicos creen que la Vía Láctea contiene mucha más materia oscura y podría ser más masiva que M31. Sin embargo, observaciones recientes del Telescopio espacial Spitzer revelaron que la M31 contiene un billón (10^12) de estrellas, excediendo por mucho el número de estrellas en nuestra galaxia, y recientes mediciones vuelven a mostrar que es más masiva que la Vía Láctea.[3] Además de ésto, algunos autores postulan que es la segunda galaxia intrínsecamente más brillante en un radio de 10 megaparsecs alrededor de la Vía Láctea, sólo superada por la galaxia del Sombrero.[4]
La galaxia se está acercando a nosotros a unos 140 kilómetros por segundo y se cree que de aquí a aproximadamente 3.000 millones a 5.000 millones de años pudiera colisionar con la nuestra y fusionarse ambas formando una galaxia elíptica gigante.

Cométa halley

El cometa Halley, oficialmente denominado 1P/Halley, es un cometa grande y brillante que orbita alrededor del Sol cada 76 años en promedio, aunque su período orbital puede oscilar entre 74 y 79 años. Es uno de los mejor conocidos y más brillantes de los cometas de "periodo corto" del cinturón de Kuiper. Se le observó por última vez en el año 1986 en las cercanías de la órbita de la tierra, se calcula que la siguiente visita sea en el año 2061; la anterior ocurrió en el año 1910. Aunque existen otros cometas más brillantes, el Halley es el único cometa de ciclo corto que es visible a simple vista, por lo que del mismo existen muchas referencias de sus apariciones, siendo el mejor documentado.

una nevulosa


Las nebulosas son regiones del medio interestelar constituidas por gases (principalmente hidrógeno y helio) y polvo. Tienen una importancia cosmológica notable porque son los lugares donde nacen las estrellas por fenómenos de condensación y agregación de la materia, aunque en otras ocasiones se tratan de los restos de una estrella que ha muerto.

miércoles, 24 de septiembre de 2008

El Agua


El agua es un bien escaso que hay que conservar en buen estado. Cumpliendo algunos de los siguientes apartados que vienen a continuación se podrá mejorar el agua y con ello el planeta Tierra: No desperdiciar el agua, poner el lavavajillas lleno antes de usarlo,, al lavarte los dientes cerrar el grifo; ducharse en ved de vañarse y por último no dejar los grifos de casa o fuentes abiertos para hacer la graciosada de turno.

Una supernova

Una estrella puede morir de dos formas 1º- Formando otra estrella mediante una supernova.2º- Apagarse sin más.